Question 976679
To find the inverse use x,y nomenclature.
{{{y=log(((6x+5)/(2x-4)))}}}
Interchange x and y and solve for y.
That new y is the inverse.
{{{x=log(((6y+5)/(2y-4)))}}
.
.
{{{10^x=(6y+5)/(2y-4)}}}
{{{10^x=(6y+5)/(2y-4)}}}
{{{6y+5=2*10^x*y-4*10^x}}}
{{{6y-2*10^x*y=-5-4*10^x}}}
{{{y(6-2*10^x)=-5-4*10^x}}}
{{{y=-(5+4*10^x)/(6-2*10^x)}}}
{{{y=-(1/2)((5+4*10^x)/(3-10^x))}}}
{{{h^(-1)(x)=-(1/2)((5+4*10^x)/(3-10^x))}}}