Question 976849
{{{L+W=190}}}
.
.
{{{A=L*W}}}
From above,
{{{L=190-W}}}
{{{A=(190-W)W}}}
{{{A=190W-W^2}}}
To find the maximum value of a quadratic, convert to vertex form,
{{{A=-(W^2-190W)}}}
{{{A=-(W^2-190W+9025)+9025}}}
{{{A=-(W-95)^2+9025}}}
So the maximum area {{{9025}}}{{{m^2}}} occurs when {{{W=95}}}{{{m}}} so then
{{{L=190-95}}}
{{{L=95}}}{{{m}}}