Question 975282

{{{x^2/16+y^2/9=1}}}

 {{{x-intercept}}} occurs when {{{y = 0}}}, so set {{{y = 0}}} and solve for {{{x}}}: 

{{{x^2/16+0^2/9=1}}}

{{{x^2/16=1}}}

{{{x^2=16}}}

{{{x=sqrt(16)}}}

solutions:

{{{x=4}}} and {{{x=-4}}}

so,  {{{x-intercepts}}} are at ({{{4}}},{{{0}}}) and ({{{-4}}},{{{0}}})


 {{{y-intercept}}} occurs when {{{x = 0}}}, so set {{{x = 0}}} and solve for {{{y}}}: 

{{{0^2/16+y^2/9=1}}}

{{{y^2/9=1}}}

{{{y^2=9}}}

{{{y=sqrt(9)}}}

solutions:

{{{y=3}}} and {{{y=-3}}}

so,  {{{y-intercepts}}} are at ({{{0}}},{{{3}}}) and ({{{0}}},{{{-3}}})


{{{ graph( 600, 600, -10, 10, -10, 10,-sqrt((1-x^2/16)9), sqrt((1-x^2/16)9)) }}}