Question 974719
<pre>
A sequence in arithmetic if any two pairs of succesive terms have the same common difference.

A sequence in geometric if any two pairs of succesive terms have the same common quotient (or ratio).

A) is geometric because 1÷(1/4) = 1×(4/1) = 4 and 4÷1 = 4 = common ratio = r

The formula for the nth term of a geometric sequence is:

{{{a[n]}}}{{{""=""}}}{{{a[1]r^(n-1)}}} where {{{a[1]}}} is the first term
and r is the common ratio:

{{{a[n]}}}{{{""=""}}}{{{expr(1/4)*(4)^(n-1)}}}{{{""=""}}}{{{4^(-1)*4^(n-1)}}}{{{""=""}}}{{{4^(-1+n-1)}}}{{{""=""}}}{{{4^(n-2)}}}

So {{{a[n]}}}{{{""=""}}}{{{4^(n-2)}}}

------------------

B) is arithmetic because 7-2 = 5 and 12-7 = 5 = common difference = d

The formula for the nth term of an arithmetic sequence is:

{{{a[n]}}}{{{""=""}}}{{{a[1]+(n-1)d}}} where {{{a[1]}}} is the first term
and d is the common ratio:

{{{a[n]}}}{{{""=""}}}{{{2+(n-1)(5)}}}{{{""=""}}}{{{2+5(n-1)}}}{{{""=""}}}{{{2+5n-5}}}{{{""=""}}}{{{5n-3}}}

So {{{a[n]}}}{{{""=""}}}{{{5n-3}}}

Edwin</pre>