Question 974277

Prove that sinxtanx + sinx/tanx= 1/cosx
<pre>Left side will be made congruent to right side
{{{(sin x)(tan x) + (sin x)/(tan x) = 1/cos x }}}
{{{(sin x) * ((sin x)/(cos x)) + (sin x)}}}{{{"÷"}}}{{{(sin x)/(cos x) = 1/cos x}}}
{{{(sin x) * ((sin x)/(cos x)) + (sin x)}}}{{{"*"}}}{{{(cos x)/(sin x) = 1/cos x}}}
{{{(sin x) * ((sin x)/(cos x)) + cross((sin x))}}}{{{"*"}}}{{{(cos x)/cross((sin x)) = 1/cos x}}}
{{{(sin x) * ((sin x)/(cos x)) + cos x = 1/cos x}}}
{{{(sin^2 (x))/(cos x) + cos x = 1/(cos x)}}}
{{{(sin^2 (x) + cos^2 (x))/cos x = 1/cos x}}}
{{{highlight_green(highlight_green(1/cos x = 1/cos x))}}} ------- {{{sin^2 (x) + cos^2 (x) = 1}}}