Question 971791
a pair if dice is is. what that probability that the sum is equal to: 

A. 5. 
<pre>Here are all 36 possible ways the pair of dice can land.  The
cases when their sum is equal to 5 are in red:

<b>
(1,1)  (1,2)  (1,3)  <font color='red'>(1,4)</font>  (1,5)  (1,6)

(2,1)  (2,2)  <font color='red'>(2,3)</font>  (2,4)  (2,5)  (2,6)

(3,1)  <font color='red'>(3,2)</font>  (3,3)  (3,4)  (3,5)  (3,6)

<font color='red'>(4,1)</font>  (4,2)  (4,3)  (4,4)  (4,5)  (4,6)

(5,1)  (5,2)  (5,3)  (5,4)  (5,5)  (5,6)

(6,1)  (6,2)  (6,3)  (6,4)  (6,5)  (6,6)

</b>
So the probability that they will land such that their sum is
equal to 5 is those 4 ways out of the 36 possible rolls.
4 out of 36 is a probability of {{{4/36}}} which reduces to {{{1/9}}}.

---------------
</pre>
B. 10.
<pre>Here again are all 36 possible ways the pair of dice can land.  This
time the cases when their sum is equal to 10 are in red:

<b>
(1,1)  (1,2)  (1,3)  (1,4)  (1,5)  (1,6)

(2,1)  (2,2)  (2,3)  (2,4)  (2,5)  (2,6)

(3,1)  (3,2)  (3,3)  (3,4)  (3,5)  (3,6)

(4,1)  (4,2)  (4,3)  (4,4)  (4,5)  <font color='red'>(4,6)</font>

(5,1)  (5,2)  (5,3)  (5,4)  <font color='red'>(5,5)</font>  (5,6)

(6,1)  (6,2)  (6,3)  <font color='red'>(6,4)</font>  (6,5)  (6,6)

</b>
So the probability that they will land such that their sum is
equal to 10 is those 3 ways out of the 36 possible rolls.
3 out of 36 is a probability of {{{3/36}}} which reduces to {{{1/12}}}.

-------------------
</pre>
c. at most 9. 
<pre>Here again are all 36 possible ways the pair of dice can land.  This time the
cases when their sum is at most 9 are in red:

<b>
<font color='red'>(1,1)</font>  <font color='red'>(1,2)</font>  <font color='red'>(1,3)</font>  <font color='red'>(1,4)</font>  <font color='red'>(1,5)</font>  <font color='red'>(1,6)</font>

<font color='red'>(2,1)</font>  <font color='red'>(2,2)</font>  <font color='red'>(2,3)</font>  <font color='red'>(2,4)</font>  <font color='red'>(2,5)</font>  <font color='red'>(2,6)</font>

<font color='red'>(3,1)</font>  <font color='red'>(3,2)</font>  <font color='red'>(3,3)</font>  <font color='red'>(3,4)</font>  <font color='red'>(3,5)</font>  <font color='red'>(3,6)</font>

<font color='red'>(4,1)</font>  <font color='red'>(4,2)</font>  <font color='red'>(4,3)</font>  <font color='red'>(4,4)</font>  <font color='red'>(4,5)</font>  (4,6)

<font color='red'>(5,1)</font>  <font color='red'>(5,2)</font>  <font color='red'>(5,3)</font>  <font color='red'>(5,4)</font>  (5,5)  (5,6)

<font color='red'>(6,1)</font>  <font color='red'>(6,2)</font>  <font color='red'>(6,3)</font>  (6,4)  (6,5)  (6,6)

</b>
So the probability that they will land such that their sum is
at most 9 is those 30 ways out of the 36 possible rolls.
30 out of 36 is a probability of {{{30/36}}} which reduces to {{{5/6}}}.

------------------------
</pre>
d. at least 8.
<pre>Here once more are all 36 possible ways the pair of dice can land.  This
time the cases when their sum is at least 8 are in red:

<b>
(1,1)  (1,2)  (1,3)  (1,4)  (1,5)  (1,6)

(2,1)  (2,2)  (2,3)  (2,4)  (2,5)  <font color='red'>(2,6)</font>

(3,1)  (3,2)  (3,3)  (3,4)  <font color='red'>(3,5)</font>  <font color='red'>(3,6)</font>

(4,1)  (4,2)  (4,3)  <font color='red'>(4,4)</font>  <font color='red'>(4,5)</font>  <font color='red'>(4,6)</font>

(5,1)  (5,2)  <font color='red'>(5,3)</font>  <font color='red'>(5,4)</font>  <font color='red'>(5,5)</font>  <font color='red'>(5,6)</font>

(6,1)  <font color='red'>(6,2)</font>  <font color='red'>(6,3)</font>  <font color='red'>(6,4)</font>  <font color='red'>(6,5)</font>  <font color='red'>(6,6)</font>

</b>
So the probability that they will land such that their sum is
at least 8 is those 15 ways out of the 36 possible rolls.
15 out of 36 is a probability of {{{15/36}}} which reduces to {{{5/12}}}.

Edwin</pre>