Question 969308
Find the points (if any) where the circle x^2 + y^2 = 50 intersects the parabola y=x^2-1
-----------------
Sub for y in the circle's equation.
x^2 + (x^2-1)^2 = 50
{{{x^4 - x^2 + 1 = 50}}}
{{{x^4 - x^2 - 49 = 0}}}
*[invoke solve_quadratic_equation 1,-1,-49]
===========
{{{x^2 = 1/2 +- sqrt(197)/2}}}
{{{x^2 = (1 +- 2sqrt(197))/4}}}
----
{{{x = +sqrt(1 + 2sqrt(197))/2}}}  real number
{{{x = -sqrt(1 + 2sqrt(197))/2}}}  real number
{{{x = +sqrt(1 - 2sqrt(197))/2}}}  complex number
{{{x = -sqrt(1 - 2sqrt(197))/2}}}  complex number
=============
Find y using {{{x^2 = 1/2 + sqrt(197)/2}}}
{{{y = -1/2 + sqrt(197)/2}}} for both real number solutions.