Question 967172
.
{{{y=(-3.3/23.7)x+437/79}}}
{{{y =(9.75/-10)x+8.675}}} Use first equation to substitute for y.
.
{{{(-3.3/23.7)x+(437/79)=(9.75/-10)x+8.675}}} Convert fractions to decimals. 
.
{{{0.139x+5.532=-0.975x+8.675}}} Add 0.975x to each side.
{{{1.114x+5.532=8.675}}} Subtract 5.532 from each side.
{{{1.114x=3.143}}} Divide each side by 1.114.
{{{x=2.821}}} Use this in first equation and solve for y.
.
{{{y=(-3.3/23.7)x+437/79}}}
{{{y=(-3.3/23.7)(2.821)+437/79}}}
{{{y=(0.139)(2.821)+(5.532)}}}
{{{y=(0.392)+(5.532)}}}
{{{y=5.924}}}
ANSWER: The solution to the system is (2.821,5.924)
.
CHECK:
Use second equation to check.
{{{y =(9.75/-10)x+8.675}}} Plug in values.
{{{5.924=(9.75/-10)(2.821)+8.675}}}
{{{5.924=(-0.975)(2.821)+8.675}}}
{{{5.924=(-2.750)+8.675}}}
{{{5.924=5.924}}}