Question 966066
find the solution for tan^2x+secx = 1 [0< x< 360)
{{{tan^2(x)+secx=1}}}
{{{(sin^2(x)/cos^2(x))+(1/cosx)=1}}}
lcd: cos^2(x)
{{{(sin^2(x))+(cosx)=cos^2(x)}}}
{{{(1-cos^2(x))+(cosx)=cos^2(x)}}}
2cos^2(x)-cosx-1=0
(2cosx+1)(cosx-1)=0
cosx=-1/2
x=120&#730;, 240&#730;(In quadrants II and III where cos < 0
or cosx=1
x=0