Question 963937
{{{x-y^2+9=0}}}
{{{2x^2+y^2-10=0}}}
From eq. 2,
{{{y^2=10-2x^2}}}
Substitute into eq. 1,
{{{x-(10-2x^2)+9=0}}}
{{{x-10+2x^2+9=0}}}
{{{2x^2+x-1=0}}}
{{{(x+1)(2x-1)=0}}}
Two solutions:
{{{x+1=0}}}
{{{x=-1}}}
Then,
{{{y^2=10-2(1/4)}}}
{{{y^2=10-1/2}}}
{{{y^2=19/2}}}
{{{y=0 +-sqrt(19/2)}}}
{{{y=0 +-sqrt(38)/2}}}
.
.
{{{2x-1=0}}}
{{{2x=1}}}
{{{x=1/2}}}
Then,
{{{y^2=10-2(1/2)}}}
{{{y^2=9}}}
{{{y=0 +- 3}}}
.
.
.
({{{-1}}},{{{2sqrt(2)}}})
({{{-1}}},{{{-2sqrt(2)}}})
({{{1/2}}},{{{sqrt(38)/2}}})
({{{1/2}}},{{{-sqrt(38)/2}}})
.
.
.
*[illustration azs.JPG].