Question 964466
{{{xy=6}}}
{{{x=6/y}}}
Substitute,
{{{2(6/y)+y=2}}}
{{{12/y+y=2}}}
{{{12+y^2=2y}}}
{{{y^2-2y+12=0}}}
{{{y^2-2y+1+12=1}}}
{{{(y-1)^2=-11}}}
{{{y-1=0 +- sqrt(11)i}}}
{{{y=1 +- sqrt(11)i}}}
So then,
{{{2x+ 1+ sqrt(11)i)=2}}}
{{{2x=1-sqrt(11)i}}}
{{{x=(1-sqrt(11)i)/2}}}
and
{{{x=(1+sqrt(11)i)/2}}}
The solutions are,
({{{(1-sqrt(11)i)/2}}},{{{1 + sqrt(11)i}}}) and
({{{(1+sqrt(11)i)/2}}},{{{1 - sqrt(11)i}}})