Question 964018

solve for x.
2^(x^2-x+10)=16^(7-x)
if there is more than one solution, separate them with commas.
<pre>{{{highlight(2^(x^2 - x + 10) = 16^(7 - x))}}}
{{{2^(x^2 - x + 10) = (2^4)^(7 - x))}}}
{{{2^(x^2 - x + 10) = 2^(4(7 - x))}}}
{{{x^2 - x + 10 = 4(7 - x)}}} --------- Bases are equal and so are their exponents 
{{{x^2 - x + 10 = 28 - 4x}}}
{{{x^2 - x + 4x + 10 - 28 = 0}}}
{{{x^2 + 3x - 18 = 0}}}
(x + 6)(x - 3) = 0
{{{highlight_green(x = - 6)}}}    	OR	{{{highlight_green(x = 3)}}}