Question 963167


the inverse of {{{log(7x) }}} is {{{10^x/7}}}

------------------

{{{1/2=log(n^3 )}}}

{{{1/2=3log(n)}}}

{{{(1/2)/3=log(n)}}}

{{{1/6=log(n)}}}

{{{1/6 = (log(n))/(log(10))}}}

{{{(1/6)log(10) = log(n)}}}

{{{log(10^(1/6)) = log(n)}}}....if log same, then

{{{10^(1/6) = n}}}

{{{n=root(6,10)}}}

-----------------

functions of the type  {{{y = a* b^x}}}  are called "exponential functions" 

you have {{{4.6*2^(n-1) =4.6*(2^n/2)=2.3*2^n}}}

 so, exponential form is => {{{y =2.3*2^n}}}