Question 962440

let a number be {{{x}}}
{{{80}}}%={{{0.80}}} of a number is {{{0.80x}}} 
{{{20}}}%={{{0.20}}}

if added {{{0.80x}}} to {{{10}}}, we have  {{{10+0.80x}}} 

if the result is {{{14}}} more than {{{0.20}}} of twice the number {{{(2x)}}}, then we have

{{{10+0.80x=0.20(2x)+14}}}........solve for {{{x}}} 

{{{10+0.80x=0.40x+14}}}

{{{0.80x-0.40x=14-10}}}

{{{0.40x=4}}}

{{{x=4/0.40}}}

{{{x=400/40}}}


{{{highlight(x=10)}}}


check:

{{{80}}}% of {{{10}}} is {{{0.80*10=8}}}

{{{20}}}% of {{{2*10}}} is {{{0.20*20=4}}}

{{{10+0.80x=10+8=18}}}

{{{0.20(2x)+14=4+14=18}}}