Question 962283

the range of values of {{{x}}} .
A cyclist travels {{{xkm}}} in {{{4h}}} ,=>{{{(x/4)(km/h)}}}
then {{{ 60xkm }}}(I guess you have that) in {{{7h}}}=>{{{(60x/7)(km/h)}}}
Its average speed does not exceed {{{150(km/h )}}}

 {{{(x/4)(km/h)+(60x/7)(km/h)<=150(km/h )}}}

{{{(7x/28)(km/h)+(240x/28)(km/h)<=150(km/h )}}}

{{{((7x+240x)/28)(km/h)<=150(km/h )}}}

{{{247x<=28*150}}}

{{{x<=4200/247}}}

{{{x<=17.00404858299595}}}

 the range of values of {{{x}}} will be numbers less and equal  than {{{17.00404858299595}}}, which are {{{17.00404858299595}}},{{{17}}},{{{16}}},{{{15}}},......


check:
{{{(17/4)(km/h)+((60*17)/7)(km/h)<=150(km/h )}}}

{{{(17.00404858299595/4)(km/h)+(1020.242914979757/7)(km/h)<=150(km/h )}}}

{{{(4.251012145748988+145.748987854251)(km/h)<=150(km/h )}}}

{{{150(km/h)<=150(km/h )}}}

or, to make it easier, round it to

{{{x<=17}}}

the range of values of {{{x}}} will be numbers less and equal  than {{{17}}}, which are {{{17}}},{{{16}}},{{{15}}},......

check:
{{{(17/4)(km/h)+((60*17)/7)(km/h)<=150(km/h )}}}

{{{(17/4)(km/h)+(1020/7)(km/h)<=150(km/h )}}}

{{{4.25(km/h)+145.714(km/h)<=150(km/h )}}}

{{{149.964(km/h)<=150(km/h )}}}