Question 962185
Use the given information about x to find the exact values of the following.
cosx = 56/65
{{{sinx=sqrt(1-cos^2(x))=sqrt(1-(3136/4225))=sqrt(1-(3136/4225))=sqrt(1089/4225)=33/65}}}
where 0 < &#952; < &#960;/2: 
sin(2x)=2*sinx*cosx=2*33/65*56/65=3696/4225
{{{sin(x/2)=sqrt((1-cosx)/2)=sqrt((1-(56/65)/2))=sqrt((9/65)/2)=sqrt(9/130)=3/sqrt(130)=3sqrt(130)/130}}}
cos(2x)=cos^2(x)-sin^2(x)=3136/4225-1089/4245=2047/4245
{{{cos(x/2)=sqrt((1+cosx)/2)=sqrt((1+(56/65)/2))=sqrt((121/65)/2)=11/sqrt(130)=11sqrt(130)/130}}}
tan(2x)=sin(2x)/cos(2x)=3696/2047
tan(x/2)=sin(x/2)/cos(x/2)={{{3/11}}}