Question 960518


Looking at the expression {{{4d^2+36d+81}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{36}}}, and the last term is {{{81}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{81}}} to get {{{(4)(81)=324}}}.



Now the question is: what two whole numbers multiply to {{{324}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{36}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{324}}} (the previous product).



Factors of {{{324}}}:

1,2,3,4,6,9,12,18,27,36,54,81,108,162,324

-1,-2,-3,-4,-6,-9,-12,-18,-27,-36,-54,-81,-108,-162,-324



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{324}}}.

1*324 = 324
2*162 = 324
3*108 = 324
4*81 = 324
6*54 = 324
9*36 = 324
12*27 = 324
18*18 = 324
(-1)*(-324) = 324
(-2)*(-162) = 324
(-3)*(-108) = 324
(-4)*(-81) = 324
(-6)*(-54) = 324
(-9)*(-36) = 324
(-12)*(-27) = 324
(-18)*(-18) = 324


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{36}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>324</font></td><td  align="center"><font color=black>1+324=325</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>162</font></td><td  align="center"><font color=black>2+162=164</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>108</font></td><td  align="center"><font color=black>3+108=111</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>81</font></td><td  align="center"><font color=black>4+81=85</font></td></tr><tr><td  align="center"><font color=black>6</font></td><td  align="center"><font color=black>54</font></td><td  align="center"><font color=black>6+54=60</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>36</font></td><td  align="center"><font color=black>9+36=45</font></td></tr><tr><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>27</font></td><td  align="center"><font color=black>12+27=39</font></td></tr><tr><td  align="center"><font color=red>18</font></td><td  align="center"><font color=red>18</font></td><td  align="center"><font color=red>18+18=36</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-324</font></td><td  align="center"><font color=black>-1+(-324)=-325</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-162</font></td><td  align="center"><font color=black>-2+(-162)=-164</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-108</font></td><td  align="center"><font color=black>-3+(-108)=-111</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-81</font></td><td  align="center"><font color=black>-4+(-81)=-85</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-54</font></td><td  align="center"><font color=black>-6+(-54)=-60</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-36</font></td><td  align="center"><font color=black>-9+(-36)=-45</font></td></tr><tr><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-12+(-27)=-39</font></td></tr><tr><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-18</font></td><td  align="center"><font color=black>-18+(-18)=-36</font></td></tr></table>



From the table, we can see that the two numbers {{{18}}} and {{{18}}} add to {{{36}}} (the middle coefficient).



So the two numbers {{{18}}} and {{{18}}} both multiply to {{{324}}} <font size=4><b>and</b></font> add to {{{36}}}



Now replace the middle term {{{36d}}} with {{{18d+18d}}}. Remember, {{{18}}} and {{{18}}} add to {{{36}}}. So this shows us that {{{18d+18d=36d}}}.



{{{4d^2+highlight(18d+18d)+81}}} Replace the second term {{{36d}}} with {{{18d+18d}}}.



{{{(4d^2+18d)+(18d+81)}}} Group the terms into two pairs.



{{{2d(2d+9)+(18d+81)}}} Factor out the GCF {{{2d}}} from the first group.



{{{2d(2d+9)+9(2d+9)}}} Factor out {{{9}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2d+9)(2d+9)}}} Combine like terms. Or factor out the common term {{{2d+9}}}



{{{(2d+9)^2}}} Condense the terms.



===============================================================



Answer:



So {{{4d^2+36d+81}}} factors to {{{(2d+9)^2}}}.



In other words, {{{4d^2+36d+81=(2d+9)^2}}}.



Note: you can check the answer by expanding {{{(2d+9)^2}}} to get {{{4d^2+36d+81}}} or by graphing the original expression and the answer (the two graphs should be identical).


------------------------------------------------------------------------------------------------------------------------


If you need more one-on-one help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>. You can ask me a few more questions for free, but afterwards, I would charge you ($2 a problem to have steps shown or $1 a problem for answer only).


Alternatively, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Any amount is greatly appreciated as it helps me a lot. This donation is to support free tutoring. Thank you.


Jim

------------------------------------------------------------------------------------------------------------------------