Question 960515


Looking at the expression {{{w^2+30w+81}}}, we can see that the first coefficient is {{{1}}}, the second coefficient is {{{30}}}, and the last term is {{{81}}}.



Now multiply the first coefficient {{{1}}} by the last term {{{81}}} to get {{{(1)(81)=81}}}.



Now the question is: what two whole numbers multiply to {{{81}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{30}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{81}}} (the previous product).



Factors of {{{81}}}:

1,3,9,27,81

-1,-3,-9,-27,-81



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{81}}}.

1*81 = 81
3*27 = 81
9*9 = 81
(-1)*(-81) = 81
(-3)*(-27) = 81
(-9)*(-9) = 81


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{30}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>81</font></td><td  align="center"><font color=black>1+81=82</font></td></tr><tr><td  align="center"><font color=red>3</font></td><td  align="center"><font color=red>27</font></td><td  align="center"><font color=red>3+27=30</font></td></tr><tr><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>9</font></td><td  align="center"><font color=black>9+9=18</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-81</font></td><td  align="center"><font color=black>-1+(-81)=-82</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-27</font></td><td  align="center"><font color=black>-3+(-27)=-30</font></td></tr><tr><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-9</font></td><td  align="center"><font color=black>-9+(-9)=-18</font></td></tr></table>



From the table, we can see that the two numbers {{{3}}} and {{{27}}} add to {{{30}}} (the middle coefficient).



So the two numbers {{{3}}} and {{{27}}} both multiply to {{{81}}} <font size=4><b>and</b></font> add to {{{30}}}



Now replace the middle term {{{30w}}} with {{{3w+27w}}}. Remember, {{{3}}} and {{{27}}} add to {{{30}}}. So this shows us that {{{3w+27w=30w}}}.



{{{w^2+highlight(3w+27w)+81}}} Replace the second term {{{30w}}} with {{{3w+27w}}}.



{{{(w^2+3w)+(27w+81)}}} Group the terms into two pairs.



{{{w(w+3)+(27w+81)}}} Factor out the GCF {{{w}}} from the first group.



{{{w(w+3)+27(w+3)}}} Factor out {{{27}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(w+27)(w+3)}}} Combine like terms. Or factor out the common term {{{w+3}}}



===============================================================



Answer:



So {{{w^2+30w+81}}} factors to {{{(w+27)(w+3)}}}.



In other words, {{{w^2+30w+81=(w+27)(w+3)}}}.



Note: you can check the answer by expanding {{{(w+27)(w+3)}}} to get {{{w^2+30w+81}}} or by graphing the original expression and the answer (the two graphs should be identical).


------------------------------------------------------------------------------------------------------------------------


If you need more one-on-one help, email me at <a href="mailto:jim_thompson5910@hotmail.com?Subject=I%20Need%20Algebra%20Help">jim_thompson5910@hotmail.com</a>. You can ask me a few more questions for free, but afterwards, I would charge you ($2 a problem to have steps shown or $1 a problem for answer only).


Alternatively, please consider visiting my website: <a href="http://www.freewebs.com/jimthompson5910/home.html">http://www.freewebs.com/jimthompson5910/home.html</a> and making a donation. Any amount is greatly appreciated as it helps me a lot. This donation is to support free tutoring. Thank you.


Jim

------------------------------------------------------------------------------------------------------------------------