Question 960322
Let {{{ a }}} = Trevor's paddling speed in still water
Let {{{ b }}} = Mark's paddling speed in still water
-----------------------
Trevor's equation:
(1) {{{ 27 = ( a + 3 )*t[1] }}}
Mark's equation:
(2) {{{ 10 = ( b - 2 )*t[2] }}}
(3) {{{ t[1] + t[2] = 11.333 }}}
--------------------------
This can't be solved unless they both
paddle at the same speed -I'll have to
assume that {{{ a = b }}}
-----------------------
(1) {{{ t[1] = 27 / (( a + 3 )) }}}
(2) {{{ t[2] = 10 / (( a - 2 )) }}}
-----------------------------
{{{ 27 / (( a + 3 )) + 10 / (( a - 2 )) = 11.333 }}}
Multiply both sides by {{{ ( a + 3 )*( a - 2 ) }}}
{{{ 27*( a - 2 ) + 10*( a + 3 ) = ( 34/3 )*( a + 3 )*( a - 2 ) }}}
{{{ 27a - 54 + 10a + 30 = ( 34/3 )*( a^2 + 2 - 6 ) }}}
---------------------
You can finish: solve for {{{ a }}}, then find {{{ t[1] }}}