Question 959837
Suppose sin(u)= -2/9 and tan(u)<0 
reference angle (u) is in quadrant IV
adjacent side of reference right triangle in quadrant IV=&#8730;(9^2)-(2^2)=&#8730;(81-4)=&#8730;77
cos(u)=&#8730;77/9
tan(u)=sin(u)/cos(u)=-2/&#8730;77
a. locate the terminal point P_u for u on the unit circle and find its coordinates
terminal point P on the unit circle =(&#8730;77/9,-2/9)
b. Find the exact value of each of the following: 
i. cos(74&#960;-u)=cos(74&#960;)*cos(u)+sin(74&#960;)*sin(u)=1*&#8730;77/9+0*-2/9=&#8730;77/9
ii. tan(u+3&#960;/2)=(tan(u)+tan(3&#960;/2))/(1-tan(u)*tan(3&#960;/2))=-2/&#8730;77+u.d./1-2/&#8730;77*u.d.=undefined
iii. csc(-u) =1/sin(-u)=1/-sin(u)=9/2