Question 957455
Which of the following functions has a hole, one zero, an oblique asymptote and no vertical asymptote?

A. {{{f(x)=((x-7)(x^2+1))/((x-7)(x-5))}}}
hole at x = 7 ; horizontal asympt: y = x ; vert asympt: x = 5
==================================================================
B. {{{f(x)=((x-7)(x^2-1))/((x-7)(x-2))}}}
hole at x = 7 ; HA: y = x ; VA: x = 2
-------------------------------------------------
C. {{{f(x)=((x-7)(x^3-4))/((x-7)(x^2+5))}}}
hole at x = 7 ; HA: y = x ; VA: none
-------------------------------------------
D. {{{f(x)=(x-7)/((x-7)(x-5))}}}
hole::x = 7 ; HA: y = 0 ; VA: x = 5
--------------
Cheers,
Stan H.
------------------