Question 955625

the lines {{{y = 2x + 6}}} and {{{y = (1/2)x -6}}} intersect each other where

{{{ 2x + 6=(1/2)x -6}}}...solve for {{{x}}}

{{{ 2*2x + 2*6=2(1/2)x -2*6}}}

{{{ 4x + 12=x -12}}}

{{{ 4x -x= -12 -12}}}

{{{ 3x= -24}}}

{{{ x= -24/3}}}

{{{ x= -8}}}

now, find the value of {{{y}}}

{{{y = 2(-8) + 6}}}=>{{{y = -16+ 6}}}=>{{{y = -10}}}
and {{{y = (1/2)x -6}}}=> {{{y = (1/2)(-8) -6}}}=> {{{y = -4 -6}}}=> {{{y = -10}}}



so, your answer is:
the y–value of the point at which the lines {{{y = 2x + 6 }}}and {{{y = (1/2)x – 6}}} intersect each other is {{{-10}}}

{{{ graph( 600, 600, -15, 15, -15, 15, 2x + 6, (1/2)(x) -6) }}}