Question 955290

The vertex form of a parabola's equation is generally expressed as :

{{{y=a(x-h)^2+k}}} where ({{{h}}},{{{k}}}) is the vertex


{{{x^2 + 6x = 8y + 15}}}

{{{(x^2 + 6x+3^2)-3^2 = 8y + 15}}}

{{{(x + 3)^2-9 -15= 8y }}}

{{{(x + 3)^2-24 = 8y}}}

{{{y=(1/8)(x + 3)^2-24/8 }}}

{{{y=(1/8)(x + 3)^2-3}}}

focus is at: ({{{-3}}},{{{-3}}})


{{{drawing( 600, 600, -10, 10, -10, 10,
circle(-3,-3,.12),locate(-3,-3,V(-3,-3)),
 graph( 600, 600, -10, 10, -10, 10, (1/8)(x + 3)^2-3)) }}}