Question 954203
{{{A=(matrix(4,3,1,3,1,2,-4,-1,3,1,2,0,1,1))}}}
Since the system is overdetermined you need to find the pseudoinverse of matrix A.
{{{A[p]=(A[t]*A)^(-1)*A[t]}}}
{{{A[t]*A=(matrix(3,4,1,2,3,0,3,-4,1,1,1,-1,2,1))*(matrix(4,3,1,3,1,2,-4,-1,3,1,2,0,1,1))=(matrix(3,3,14,-2,5,-2,27,10,5,10,7))}}}
So then,
{{{(A[t]*A)^(-1)=(1/343)*(matrix(3,3,89,64,-155,64,73,-150,-155,-150,374))}}}
and finally,
{{{(A[t]*A)^(-1)*A[t]=(1/343)*(matrix(3,3,89,64,-155,64,73,-150,-155,-150,374))*(matrix(3,4,1,2,3,0,3,-4,1,1,1,-1,2,1))}}}
{{{A[p]=(A[t]*A)^(-1)*A[t]=(1/49)*(matrix(4,3,18,11,3,-13,19,-2,-5,-11,-33,-12,19,32))}}}
So then,
{{{x=(1/49)*(matrix(4,3,18,11,3,-13,19,-2,-5,-11,-33,-12,19,32))*(matrix(4,1,0,3,1,-1))}}}
{{{(matrix(3,1,t,u,v))=(matrix(3,1,1,0,-1))}}}