Question 954011
r=radius=1/2d=10cm d=diameter=20cm; h=altitude of cylinder=10cm; a=altitude of cone
Volume of cylinder={{{(pi)(r^2)(h)}}}
Volume of cone={{{(pi)(r^2)(a/3)}}} 
Total vol={{{(pi)r^2(h+(a/3))}}}={{{(pi)10^2cm^2(10cm+(6cm/3))}}}={{{1200(pi)cm^3}}}
ANSWER 1: Total volume of the solid is 1200{{{(pi)cm^3}}}
Surface area of cylinder (open top)={{{(pi)(r^2)+d(pi)h}}}
Surface area of cone={{{(pi)r(sqrt(a^2+r^2))}}} (without base)
Total surface area 
Cylinder={{{(pi)10^2cm^2+(pi)20cm(10cm)=pi(100cm^2+200cm^2)}}}={{{300(pi)cm^2}}}
Cone={{{(pi)(10cm)sqrt(6^2cm^2+10^2cm^2)=(pi)(10cm)sqrt(136cm^2)}}}={{{(pi)(10cm)(11.67cm)}}}={{{116.7(pi)cm^2}}}
Area cylinder without top and cone without base={{{300(pi)cm^2+116.7(pi)cm^2}}}={{{416.7cm^2}}}