Question 953711
n=first integer; n+2=second integer
{{{1/n+1/(n+2)=24/143}}} Find common denominator
{{{((n+2)/(n+2))(1/n)+(n/n)(1/n+2)=24/143}}} Multiply each side by 143(n)(n+2)
{{{143((n+2)+n)=24(n)(n+2)}}}
{{{286n+286=24n^2+48n}}} Subtract (286n+286) from each side.
{{{0=24n^2-238n-286}}}*[invoke quadratic "n", 24, -238, -286 ]
ANSWER 1: The first integer is 11
n+2=13 ANSWER 2: The second integer is 13
CHECK:
{{{1/11+1/13=24/143}}}
{{{13/143+11/143=24/143}}}
{{{24/143=24/143}}}