Question 950213
{{{tan(A)=y/(x+B)}}}  the two unknowns are used.
{{{sin(C)=y/x}}}  the two unknowns are used.
The only needed unknown variables are x and y.


Two ways to continue.


{{{y=(x+B)tan(A)}}}
-
Substitute into the C equation.
{{{sin(C)=(x+B)tan(A)/x}}}
{{{x*sin(C)=(x+B)tan(A)}}}
{{{x*sin(C)=x*tan(A)+B*tan(A)}}}
{{{x*sin(C)-x*tan(A)=B*tan(A)}}}
{{{(sin(C)-tan(A))*x=B*tan(A)}}}
{{{highlight_green(x=(B*tan(A))/(sin(C)-tan(A)))}}}



You can also now use the symbolic solution for x to obtain the symbolic solution for y using {{{y=(x+B)tan(A)}}};
{{{y=((B*tan(A))/(sin(C)-tan(A))+B)tan(A)}}}
{{{highlight_green(y=(B(tan^2(A)+tan(A)))/(sin(C)-tan(A)))}}}


Plug in all the values A, B, C, and evaluate x and y.