Question 950206

To find an inverse of a function, exchange the {{{x}}}'s and {{{y}}}'s in the original function and then re-solve for {{{y}}}. 
Recall that {{{y = log( a,x)}}} is equivalent to stating that {{{x = a^y}}} for any base {{{a > 0}}}. 


so,inverse is:

 {{{y=log(-3x)-4}}}.........exchange the {{{x}}} and {{{y}}}

{{{x=log(-3y)-4}}}

{{{x+4=log(-3y)}}}

{{{x+4=log(-3y)/log(10)}}}

{{{(x+4)log(10)=log(-3y)}}}

{{{log(10^(x+4))=log(-3y)}}} .....if log same, then
 
{{{10^(x+4)=-3y}}}

{{{10^(x+4)/-3=y}}}

{{{y=-10^(x+4)/3}}}...-> the inverse