Question 949465

{{{(5x - 2)^2 = 10}}}........take square root of both sides

{{{sqrt((5x - 2)^2 )= sqrt(10)}}}

{{{(5x - 2)= sqrt(10)}}} or {{{-(5x - 2)= sqrt(10)}}}

if {{{5x - 2= sqrt(10)}}}, then

{{{5x = sqrt(10)+2}}}

{{{x = sqrt(10)/5+2/5}}}

if {{{-(5x - 2)= sqrt(10)}}}, then

{{{-5x + 2= sqrt(10)}}}

{{{2-sqrt(10)=5x}}} or

{{{5x=2-sqrt(10)}}}

{{{x=2/5-sqrt(10)/5}}} or {{{x=-sqrt(10)/5+2/5}}}

so, your solutions are:

A. {{{x = -sqrt(10) + 2/5}}}
and
C. {{{x = sqrt (10) + 2/5}}}