Question 949086

2508 is the area of a rectangle and 202 is the
perimeter what is the length;  width?
<pre>
Let length and width be L and W, respectively
Then: LW = 2,508 ------- eq (i)
Also, 2(L + W) = 202______2(L + W) = 2(101)______L + W = 101______W = 101 - L ------ eq (ii)
L(101 - L) = 2,508 ------- Substituting 101 - L for W in eq (i)
{{{101L - L^2 = 2508}}}
{{{L^2 - 101L + 2508 = 0}}}
{{{L^2 - 57L - 44L + 2508 = 0}}}
{{{L(L - 57) - 44(L - 57) = 0}}}
(L - 44)(L - 57) = 0
L - 44 = 0                  OR                 L - 57 = 0
L = 44                      OR                 L = 57

This means that if length = 44, then width = 57
However, if length = 57, then width = 44
Thus, dimensions are: {{{highlight_green(44_units_by_57_units)}}}