Question 948739
The surface area of a rectangular prism may be found with the following formula:

{{{SA = 2(L + W)h + 2LW }}}
The volume of a rectangular prism may be found with the following formula:

{{{V = LWH}}}

So,  the ratio of the volume to the surface area for the rectangular prism might be found with:

given:

Width: {{{W=x+4}}}
Length: {{{L=2x-2}}}
Height: {{{h=x+4}}}

{{{V/SA=LWH /(2(L + W)H + 2LW )}}}.........plug in given values


{{{V/SA=((2x-2)(x+4)(x+4)) /(2(2x-2 + x+4)(x+4) + 2(2x-2)(x+4) )}}}


{{{V/SA=((2x-2)(x+4)(x+4)) /(2(3x+2)(x+4) + 2(2x^2-2x+8x-8) )}}}


{{{V/SA=((2x-2)(x+4)(x+4)) /(2(3x^2+12x+2x+8) + (4x^2-4x+16x-16) )}}}


{{{V/SA=((2x-2)(x+4)(x+4)) /(6x^2+24x+4x+16+4x^2-4x+16x-16 )}}}


{{{V/SA=(cross(2)(x-1)(x+4)cross((x+4))) /(cross(10)5xcross((x+4)))}}}


{{{V/SA=((x-1)(x+4)) /(5x)}}}