Question 947297
In a rectangle, two opposite sides are parallel and equal in length.

so, if in a rectangle, one side equals {{{4y-13}}} and its opposite side equals {{{15-x}}}, then

{{{4y-13=15-x}}}.........solve for {{{x}}}
{{{x=-4y+13+15}}}
{{{x=-4y+28}}}......eq.1


if the other side equals {{{3x-5}}} and its opposite side equals {{{y+1}}}, then

{{{3x-5=y+1}}}........solve for {{{x}}}

{{{3x=y+1+5}}}

{{{x=y/3+6/3}}}

{{{x=y/3+2}}}......eq.2

left sides of eq.1 and eq.2 are same, so make right sides same too

{{{y/3+2=-4y+28}}}......solve for {{{y}}}


{{{y/3+4y=-2+28}}}

{{{y/3+12y/3=26}}}

{{{13y/3=26}}}

{{{13y=26*3}}}

{{{y=(cross(26)2*3)/cross(13)1}}}

{{{highlight(y=6)}}}

now find {{{x}}}

{{{x=y/3+2}}}......eq.2

{{{x=6/3+2}}}

{{{x=2+2}}}

{{{highlight(x=4)}}}