Question 946898
Find the z score for each scenario, then use the normal distribution function.
{{{z=(x-mu)/sigma=(x-57)/3.5}}}
a) {{{z=(61-57)/3.5=1.143}}}
{{{0.8735}}}, so then it's {{{1-0.8735=0.127}}} for greater than 61.
b) {{{z=(52-57)/3.5=-1.429}}} so then {{{P=0.0766}}}
c) {{{z[1]=(58-57)/3.5=0.286}}} and  {{{z[2]=(61-57)/3.5=1.143}}}
So then {{{P=.873451-.612452=0.261}}}
d) {{{z=(45-57)/3.5=-3.429}}} so then {{{P=0.0003}}}