Question 946154
Find the general form of the equation of a circle.  Center at the point (5,7); tangent to the x-axis.


I keep getting the answer x<sup>2</sup>+y<sup>2</sup>-10x-14y+49=0 

But the answer key lists the solution as x<sup>2</sup>+y<sup>2</sup>-10x-14y+25=0

What am I doing wrong?
===================
r = 7 since it's tangent to the x-axis.
--> {{{(x-5)^2 + (y-7)^2 = 49}}}
{{{x^2 - 10x + 25 + y^2 - 14y + 49 = 49}}}
{{{x^2 + y^2 - 10x - 14y + 25 = 0}}}
-----------------