Question 946162
to find the {{{x-intercepts}}} of the graph {{{y=x^2+5x-36}}}, set {{{y=0}}} and solve for {{{x}}}

{{{0=x^2+5x-36}}}


{{{x^2+5x-36=0}}}...write {{{5x}}} as {{{9x-4x}}}

{{{x^2+9x-4x-36=0}}}....group

{{{(x^2+9x)-(4x+36)=0}}}...factor

{{{x(x+9)-4(x+9)=0}}}

{{{(x-4)(x+9) = 0}}}

solutions:

if {{{(x-4) = 0}}} then {{{x=4}}}

if {{{(x+9) = 0}}} then {{{x=-9}}}

so, the {{{x-intercepts}}} of the graph {{{y=x^2+5x-36}}} are at ({{{4}}},{{{0}}}) and ({{{-9}}},{{{0}}}) 

see it on a graph:

{{{ graph( 600, 600, -15, 15, -55, 15, (x-4)(x+9)) }}}