Question 945897
The divisor being x-5, you want {{{(x^3-10x^2+20x+26)/(x-5)}}}.


Long Division for Polynomials, especially using integer coefficients, is easier than ordinary base-ten long division.


I am not explaining the steps here although the process is just like what you learned earlier:




___________|________x^2_____-15x______-55_____________________
x-5________|________x^3____-10x^2_____+20x_____+26
___________|________x^3____-5x^2
__________________________________
____________________0______-15x^2____<i>20x</i>
___________________________-15x^2_____75x
______________________________________________
___________________________0________-55x_____<i>26</i>
____________________________________-55x_____275
_____________________________________________<b>-249</b>


The use of italics was done for "bring down the next term" parts of the process.
The very top line is the quotient line, and the next line is the dividend line.


The resulting quotient is {{{highlight(x^2-15x-55)}}}, and remainder {{{highlight(-249)}}}.