Question 945385
{{{ f(x) = (e^x + 1) / (e^x - 1) }}}

make table:

{{{x}}}|{{{f(x)}}} 

{{{-5}}}|{{{-1.01}}} =>{{{ f(-5) = (e^-5+1)/(e^-5-1)=-1.01 }}}
{{{-3}}}|{{{-1.1}}}=>{{{ f(-3) = (e^-3+1)/(e^-3-1)=-1.1 }}}
 {{{-1}}}|{{{-2.2}}}=>{{{ f(-1) = (e^-1+1)/(e^-1-1)=-2.2 }}}
{{{0}}}|{{{infinity}}}=>{{{ f(0) = (e^0+1)/(e^0-1)=2/0=infinity }}}
{{{1}}}|{{{2.2}}}=>{{{ f(1) = (e^1+1)/(e^1-1)=2.2 }}}
{{{3}}}|{{{1.1}}}=>{{{ f(3) = (e^3+1)/(e^3-1)=1.1 }}}
{{{5}}}|{{{1.01}}} =>{{{ f(5) = (e^5+1)/(e^5-1)=1.01 }}}    

plot these points and draw a graph:

{{{drawing( 600, 600, -10, 10, -10, 10,
circle(-5,-1.01,.12),locate(-5,-1.01,p(-5,-1.01)),
circle(-3,-1.1,.12),locate(-3,-1.1,p(-3,-1.1)),
circle(-1,-2.2,.12),locate(-1,-2.2,p(-1,-2.2)),

circle(5,1.01,.12),locate(5,1.01,p(5,1.01)),
circle(3,1.1,.12),locate(3,1.1,p(3,1.1)),
circle(1,2.2,.12),locate(1,2.2,p(1,2.2)),

 graph( 600, 600, -10, 10, -10, 10, (e^x + 1) / (e^x - 1))) }}}