Question 941626


{{{ y=log(3,4x)}}}...to find inverse, swap {{{x}}} and {{{y}}}


{{{x=log(3,4y)}}}....solve for {{{y}}}

{{{x=log(4y)/log(3)}}}

{{{x *log(3) = log(4y)}}}

{{{log(3^x) = log(4 )+log(y)}}}

{{{log(3^x) - log(4 )=log(y)}}}

{{{log(3^x/4 )=log(y)}}}

=> {{{3^x/4 =y}}}

so, inverse of {{{ y=log(3,4x)}}} is {{{y=3^x/4 }}}


{{{ graph( 600, 600, -10, 10, -10, 10,x, log(3,4x), 3^x/4) }}}