Question 939908


{{{G(a)=(3-5a)/(2a+7)}}}

since denominator cannot be equal to zero, exclude the value of {{{a}}} that makes denominator  equal to zero

{{{(2a+7)=0}}} if {{{2a=-7}}} =>{{{a=-7/2}}}

so, domain is  { {{{a}}} element {{{R}}} : {{{a<>-7/2}}} }
(assuming a function from reals to reals)


find the indicated values of the function if possible:

{{{G(5)= (3-5*5)/(2*5+7)}}}


{{{G(5)= (3-25)/(10+7)}}}


{{{G(5)= -22/17}}}

{{{G(5)= -1.294117647058824}}}

{{{G(5)= -1.29}}} ....the indicated value of the function has possible solution


{{{G(-7/2)=(3-5*(-7/2))/(cross(2)*(-7/cross(2))+7)}}}

{{{G(-7/2)=(3-(-35/2))/(-7+7)}}}

{{{G(-7/2)=(3+35/2)/0}}}.....no solution,the indicated value of the function does not have  possible solution