Question 939423
given:

{{{a=b/2}}}

{{{b=c/2 }}}

{{{a+b+c=105}}}

solution:

=> if {{{b=c/2}}}  then {{{a=b/2=(c/2)/2=c/4}}}

{{{a+b+c=105}}} ...substitute {{{a}}}  and {{{b}}} expressed in terms of {{{c}}}

{{{c/4+c/2 +c=105}}} ....solve for {{{c}}}

{{{4c/4+4c/2 +4c=105 *4}}}

{{{c+2c+4c=420}}}

{{{7c=420}}}

{{{c=420/7}}}

{{{highlight(c=60)}}}


now find {{{a}}} and {{{b}}}

{{{b=c/2}}} => {{{b=60/2}}}  => {{{highlight(b=30)}}}

{{{a=b/2}}} => {{{a=30/2}}}  => {{{highlight(a=15)}}}