Question 937085
at first look, we see that y-intercept is {{{-1}}}; so, options {{{B}}} and {{{C}}} are excluded
A. {{{y = (1/3)x - 1}}}----could be this, or
B. {{{y = (1/3)x + 1}}}
C. {{{y = 3x + 1}}}
D. {{{y = 3x - 1 }}}----could be this


start with A. {{{y = (1/3)x - 1}}}, take few more values for {{{x}}}, find {{{y}}} and see does it match a point on a graph

if {{{x=0}}},then{{{y = 3*0 - 1=-1}}} ..this is a matching point

if {{{x=1}}},then{{{y = (1/3)1 - 1=-2/3}}} ...this is not a matching point

if {{{x=-1}}},then{{{y = -1/3 - 1=-4/3}}} ...this is not a matching point


D. {{{y = 3x - 1 }}}

if {{{x=0}}},then{{{y = 3*0 - 1=-1}}} ..this is a matching point
if {{{x=1}}},then{{{y = 3*1 - 1=2}}} ..this is a matching point
if {{{x=-1}}},then{{{y = -3 - 1=-4}}}...this is a matching point


so, solution is D. {{{y = 3x - 1 }}}