Question 934252
<pre>
Let A = Periodic amount
    R = Interest rate
    N = Number of intervals
    P = Principal
    T = Duration of the loan

Downpayment
(250000)(.30)=75000
250000-75,000=175000

{{{A= P(((r/n)(1+r/n)^(nt))/((1+r/n)^(nt)-1))}}}
{{{A=175000(((.04/12)(1+.04/12)^((12)(20)))/((1+.04/12)^((12)(20))-1))}}}
{{{A=175000(((.003333333)(1.003333333)^240)/((1.003333333)^240-1))}}}
{{{A=175000((.003333333)(2.22258191)/((2.22258191)-1))}}}
{{{A=175000(.007408606/1.22258191)}}}
{{{A=175000(.006059803)}}}
{{{A=1060.47}}}

Payment Amount Interest Principal Balance
0                                 175000
1       1060.47 583.33   477.13   174522.87
2       1060.47 581.74   478.72   174044.15

{{{A= P(((r/n)(1+r/n)^(nt))/((1+r/n)^(nt)-1))}}}
{{{A=175000(((.035/12)(1+.035/12)^((12)(20)))/((1+.035/12)^((12)(20))-1))}}}
{{{A=175000(((.002916667)(1.002916667)^240)/((1.002916667)^240-1))}}}
{{{A=175000((.002916667)(2.011702195)/((2.011702195)-1))}}}
{{{A=175000(.005867465/1.011702195)}}}
{{{A=175000(.005799597)}}}
{{{A=1014.93}}}

Payment Amount Interest Principal Balance
0                                 175000
1       1014.93 510.42    504.51  174495.49
2       1014.93 508.95    505.98  173989.50

<b>It would be beneficial for Kim to get a lower interest rate for her mortgage.</b>

</pre>