Question 933784

{{{root(3,27x^2)* root(3,16x^4)}}}..........use a root of product rule: {{{root(n,a)*root(n,b)=root(n,ab)}}}

{{{root(3,27x^2*16x^4)}}}


{{{root(3,27x^2*16x^4)}}}


{{{root(3,27*16x^(2+4))}}}


{{{root(3,27*16x^6)}}}....write {{{27}}} as {{{3^3}}},{{{16}}} as {{{2^3*2}}},and {{{x^6}}} as {{{x^3*x^3}}}


{{{root(3,3^3*2^3*2*x^3*x^3)}}}.....since {{{root(3,3^3)=3}}},{{{root(3,2^3)=2}}}, and {{{root(3,x^3)=x}}} we have


{{{3*2*x*x*root(3,2)}}}


{{{6x^2*root(3,2)}}}