Question 930962
Given cos(t)=-3/4 with pi < t < {3pi}/{2}, find the values of the following trigonometric functions.
Note: Give exact answers.
cos(2t) =
sin(2t) =
cos(t/2)=
sin(t/2) = 
***
reference angle t is in quadrant III where sin<0, cos<0
cost=-3/4
sint=-&#8730;(1-cos^2(t))=-&#8730;(1-9/16)=-&#8730;(7/16)=-&#8730;7/4
..
cos(2t)=1-2sin^2(t)=1-2(7/16)=1-14/16=2/16=1/8
sin(2t)=2sintcost=2*-(&#8730;7/4)*-(3/4)=6&#8730;7/16
cos(t/2)=-&#8730;((1+cost)/2)=-&#8730;((1-(3/4))/2)=-&#8730;(1/8)=-1/&#8730;8=-&#8730;8/8
sin(t/2)=&#8730;((1-cost)/2)=&#8730;((1+(3/4))/2)=&#8730;(7/8)