Question 931430
Suppose sin x = &#8722;4/7 and 3&#960;/2< x < 2&#960;.
Find each of the following quantities:
sin (2x) =
sec (2x) =
cot(x) = 
***
Reference angle x is in quadrant IV where sin<0, cos>0
sinx=-4/7
cosx=&#8730;(1-sin^2(x))=&#8730;(1-(16/49))=&#8730;(33/49)=&#8730;(33)/7
..
sin(2x)=2sinxcosx=2*(-4/7)*(&#8730;(33)/7=-8&#8730;(33)/49
sec(2x)=1/cos(2x)=1/(1-2sin^2(x)=1/1-32/49=1/(17/49)=49/17
cotx=cosx/sinx=-&#8730;(33)/4