Question 930560
Let    t = tens digit
       u = unit digit
   10t+u = the number
   10u+t = the reversed number

The number of two digit exceeds 4 times the sum of the digits by 3
10t+u = 4(t+u)+3

If 36 is added to the number the digits are reversed
10u+t = 10t+u+36
   9u = 9t+36
    u = t+4

Substitute u with t+4
10t+t+4 = 4(t+t+4)+3
  11t+4 = 4(2t+4)+3
  11t+4 = 8t+19
    3t = 15
     t = 5
     u = 9

The number is 59.

Check
59+36 = 95
   95 = 95

59 = 4(9+5)+3
59 = 4(14)+3
59 = 56+3
59 = 59