Question 929060
First off, find Newton's law of cooling,
{{{k(t[1]-t[2])=-ln((T[1]-T[infinity])/(T[2]-T[infinity]))}}}
Use the two data points given to find {{{k}}}.
At {{{t=0}}},{{{T=154}}}
At {{{t=10}}},{{{T=133}}},
{{{k(0-10)=-ln((154-71)/(133-71))}}}
{{{-10k=-0.291716}}}
{{{k=0.02917}}}
.
.
.
So now find {{{t}}} when {{{T=100}}},
Then,
{{{0.02917(0-t)=-ln((154-71)/(100-71))}}}
{{{-0.02917t=-1.0515}}}
{{{t=36.05}}}{{{minutes}}}
To the nearest minute, 
{{{t=36}}}