Question 928996
How do I find x in the logarithmic equation (1/4)log base 5((x^2-8x+16)^2)=2? 
----------------
log base 5((x^2-8x+16)^2) = 8
{{{log(5,(x^2-8x+16)^2) = 8}}}
{{{2log(5,(x^2-8x+16)) = 8}}}
{{{log(5,(x^2-8x+16)) = 4}}}
{{{log(5,(x-4)^2) = 4}}}
{{{2log(5,(x-4)) = 4}}}
{{{log(5,(x-4)) = 2}}}
{{{log(5,(x-4)) = log(5,5^2) = log(5,25)}}}
x-4 = 25
x = 29