Question 928716
{{{f(x) = (x - 4)/(x + 4)}}}  

to find the inverse of the function, swap {{{x}}} and {{{y}}}


{{{f(x) = (x -4)/(x + 4)}}}...since {{{f(x) =y}}}


{{{y= (x -4)/(x + 4)}}}

{{{x= (y -4)/(y + 4)}}}.....solve for {{{y}}}

{{{x(y + 4)= (y -4)}}}

{{{xy + 4x= y-4}}}

{{{4+ 4x= y-xy}}}

{{{4(1+x)= y(1-x)}}}

{{{y=4(1+x)/(1-x)}}}

{{{y=4(1+x)/(-(x-1))}}}

{{{y=-4(1+x)/(x-1)}}}

or

{{{f^-1(x)=-4(1+x)/(x-1)}}}


{{{ graph( 600, 600, -10, 10, -10, 10, (x -4)/(x + 4), -4(1+x)/(x-1)) }}}