Question 925884


{{{4b^3+16b^2+15b}}} Start with the given expression.



{{{b(4b^2+16b+15)}}} Factor out the GCF {{{b}}}.



Now let's try to factor the inner expression {{{4b^2+16b+15}}}



---------------------------------------------------------------



Looking at the expression {{{4b^2+16b+15}}}, we can see that the first coefficient is {{{4}}}, the second coefficient is {{{16}}}, and the last term is {{{15}}}.



Now multiply the first coefficient {{{4}}} by the last term {{{15}}} to get {{{(4)(15)=60}}}.



Now the question is: what two whole numbers multiply to {{{60}}} (the previous product) <font size=4><b>and</b></font> add to the second coefficient {{{16}}}?



To find these two numbers, we need to list <font size=4><b>all</b></font> of the factors of {{{60}}} (the previous product).



Factors of {{{60}}}:

1,2,3,4,5,6,10,12,15,20,30,60

-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60



Note: list the negative of each factor. This will allow us to find all possible combinations.



These factors pair up and multiply to {{{60}}}.

1*60 = 60
2*30 = 60
3*20 = 60
4*15 = 60
5*12 = 60
6*10 = 60
(-1)*(-60) = 60
(-2)*(-30) = 60
(-3)*(-20) = 60
(-4)*(-15) = 60
(-5)*(-12) = 60
(-6)*(-10) = 60


Now let's add up each pair of factors to see if one pair adds to the middle coefficient {{{16}}}:



<table border="1"><th>First Number</th><th>Second Number</th><th>Sum</th><tr><td  align="center"><font color=black>1</font></td><td  align="center"><font color=black>60</font></td><td  align="center"><font color=black>1+60=61</font></td></tr><tr><td  align="center"><font color=black>2</font></td><td  align="center"><font color=black>30</font></td><td  align="center"><font color=black>2+30=32</font></td></tr><tr><td  align="center"><font color=black>3</font></td><td  align="center"><font color=black>20</font></td><td  align="center"><font color=black>3+20=23</font></td></tr><tr><td  align="center"><font color=black>4</font></td><td  align="center"><font color=black>15</font></td><td  align="center"><font color=black>4+15=19</font></td></tr><tr><td  align="center"><font color=black>5</font></td><td  align="center"><font color=black>12</font></td><td  align="center"><font color=black>5+12=17</font></td></tr><tr><td  align="center"><font color=red>6</font></td><td  align="center"><font color=red>10</font></td><td  align="center"><font color=red>6+10=16</font></td></tr><tr><td  align="center"><font color=black>-1</font></td><td  align="center"><font color=black>-60</font></td><td  align="center"><font color=black>-1+(-60)=-61</font></td></tr><tr><td  align="center"><font color=black>-2</font></td><td  align="center"><font color=black>-30</font></td><td  align="center"><font color=black>-2+(-30)=-32</font></td></tr><tr><td  align="center"><font color=black>-3</font></td><td  align="center"><font color=black>-20</font></td><td  align="center"><font color=black>-3+(-20)=-23</font></td></tr><tr><td  align="center"><font color=black>-4</font></td><td  align="center"><font color=black>-15</font></td><td  align="center"><font color=black>-4+(-15)=-19</font></td></tr><tr><td  align="center"><font color=black>-5</font></td><td  align="center"><font color=black>-12</font></td><td  align="center"><font color=black>-5+(-12)=-17</font></td></tr><tr><td  align="center"><font color=black>-6</font></td><td  align="center"><font color=black>-10</font></td><td  align="center"><font color=black>-6+(-10)=-16</font></td></tr></table>



From the table, we can see that the two numbers {{{6}}} and {{{10}}} add to {{{16}}} (the middle coefficient).



So the two numbers {{{6}}} and {{{10}}} both multiply to {{{60}}} <font size=4><b>and</b></font> add to {{{16}}}



Now replace the middle term {{{16b}}} with {{{6b+10b}}}. Remember, {{{6}}} and {{{10}}} add to {{{16}}}. So this shows us that {{{6b+10b=16b}}}.



{{{4b^2+highlight(6b+10b)+15}}} Replace the second term {{{16b}}} with {{{6b+10b}}}.



{{{(4b^2+6b)+(10b+15)}}} Group the terms into two pairs.



{{{2b(2b+3)+(10b+15)}}} Factor out the GCF {{{2b}}} from the first group.



{{{2b(2b+3)+5(2b+3)}}} Factor out {{{5}}} from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.



{{{(2b+5)(2b+3)}}} Combine like terms. Or factor out the common term {{{2b+3}}}



--------------------------------------------------



So {{{b(4b^2+16b+15)}}} then factors further to {{{b(2b+5)(2b+3)}}}



===============================================================



Answer:



So {{{4b^3+16b^2+15b}}} completely factors to {{{b(2b+5)(2b+3)}}}.



In other words, {{{4b^3+16b^2+15b=b(2b+5)(2b+3)}}}.



Note: you can check the answer by expanding {{{b(2b+5)(2b+3)}}} to get {{{4b^3+16b^2+15b}}} or by graphing the original expression and the answer (the two graphs should be identical).